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AFIT/GM/ENP/04-08 
 
 

Abstract 

 

 
 Advective sea fog frequently plagues Kunsan Air Base (AB), Republic of Korea, 

in the spring and summer seasons.  It is responsible for a variety of impacts on military 

operations, the greatest being to aviation.  To date, there are no suitable methods 

developed for forecasting advective sea fog at Kunsan, primarily due to a lack of 

understanding of sea fog formation under various synoptic situations over the Yellow 

Sea.  This work explored the feasibility of predicting sea fog development with a 24-hour 

forecast lead time.  Before exploratory data analysis was performed, a geographical 

introduction to the region was provided along with a discussion of basic elements of fog 

formation, the physical properties of fog droplets, and its dissipation.  

 Examined in this work were data sets of Kunsan surface observations, upstream 

upper air data, sea surface temperatures over the Yellow Sea, and modeled analyses of 

gridded data over the Yellow Sea.  A complete ten year period of record was examined 

for inclusion into data mining models to find predictive patterns.  The data were first 

examined using logistic regression techniques, followed by classification and regression 

tree analysis (CART) for exploring possible concealed predictors.  Regression revealed 

weak relationships between the target variable (sea fog) and upper air predictors, with 

stronger relationships between the target variable and sea surface temperatures.  CART 

results determined the importance between the target variable and upstream upper air 

predictors, and established specific criteria to be used when forecasting target variable 

events.  The results of the regression and CART data mining analyses are summarized as 

forecasting guidelines to aid forecasters in predicting the evolution of sea fog events and 

advection over the area.   
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FORECASTING ADVECTIVE SEA FOG WITH THE USE OF 
 

CLASSIFICATION AND REGRESSION TREE ANALYSES FOR 
 

KUNSAN AIR BASE 
 
 

I.  Introduction 
 
 

Due to the geography of the East Asian continent, the formation of sea fog over 

Korea is very difficult to forecast.  This weather phenomenon occurs year-round, with a 

maximum frequency in the spring and summer months.  The result is significant impacts 

to the planning and execution of military operations in the region.  A tool to predict the 

onset and duration of sea fog events with a 24-hour lead time would be of immense 

benefit to military personnel, with positive impacts on flight safety, training, and mission 

execution.  The 8th Operation Support Squadron Weather Flight (8th OSS/OSW) based at 

Kunsan Air Base, Republic of Korea (Kunsan AB, ROK) requested this product to aid in 

the successful planning of these events instead of reacting to them as they occur.   

 
1.1 Statement of the Problem 

 Advective sea fog, usually a spring and summer phenomena, causes dramatic 

decreases in ceiling and visibilities, with significant operational impacts to Kunsan AB.  

During each sea fog episode, ceilings and visibilities can fluctuate through several 

forecast categories over a short period of time.  Fog is the most frequent cause of ground 

visibilities decreasing below three miles (FAA and Dept. of Commerce 1965), and stratus 

clouds can also lower ceilings below flight minimums.  Since fog and low stratus are 
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near-surface phenomena, they are a hazard to aviation primarily on takeoffs and landings 

(Venne 1997) at Kunsan AB and can obscure targets at other locations. 

In an attempt to provide more accurate forecasting methods for the occurrence of 

sea fog, it is necessary to understand the mechanisms that control the formation of this 

weather phenomenon. Advection fog is a type of fog caused by the movement of moist 

air over a cold surface, and the cooling of that air to below its dew point temperature 

(Glickman 2000). Sea fog is a common type of advection fog whereby the moist air 

moves over a body of cooler water.  To date, there are no reliable forecast techniques 

(with 24 hours or more lead time) for advection fog at Kunsan AB, mainly due to the lack 

of understanding of sea fog under various synoptic conditions in this region (Cho et al. 

2000), and a lack of understanding of offshore predictors.  An analysis of advection fog 

formation, and its meteorological and oceanographic environments, could provide useful 

information to understanding the physical processes of fog development over this area.  

The capability to provide mission commanders with this planning weather is essential for 

high combat effectiveness and flight safety.  A method for advance advective sea fog 

forecasting must be devised whereby forecasters can provide commanders with accurate 

weather intelligence information. 

1.2   Scope of Research  

The first step of this research was to provide the reader with a complete 

familiarization of the surrounding geography and its effects on Kunsan AB’s climate. An 

understanding of the large-scale global circulation patterns affecting the region is 

necessary to understand the synoptic situations which lead to sea fog formation.  A 

thorough literature review of fog formation, types of fogs, physical properties, and a 



 3

detailed analysis of sea fog was also necessary before proceeding with the predictive 

work.   

There are many causes of sea fog generation.  Some sea fog events are dominated 

by air advection, others by radiation, and some events have several causes occurring 

simultaneously.  Since all mechanisms of sea fog generation in the sea region west of 

Kunsan AB are still not clearly understood, there exist certain difficulties in the 

development of forecast equations and numerical modeling solutions for the prediction of 

sea fog. 

At the current time, statistical analysis of empirical methods is the most logical 

approach for conducting further research on this subject.  Internal relationships (known 

and unknown) exist between all meteorological and hydrological elements with regards 

to sea fog.  Therefore, it is beneficial to use statistical methods to analyze the multiple 

weather and hydrological parameters, and to determine empirical relationships which are 

conducive to advection sea fog impacting Kunsan AB.   

By using statistical methods, it may be possible to locate a clear relationship 

within seemingly irregular meteorological data through statistical analyses; objective 

laws showing the relationships among various weather and oceanic elements may be 

found.  Within the last 10 years, interest has increased in the use of classification and 

regression tree (CART) analyses (Lewis 2000) for prediction when standard statistical 

analyses have failed to find any predictive patterns.  CART analysis is a decision forecast 

tree-building technique, which is unlike traditional statistical analysis techniques.  CART 

is often able to uncover complex interactions between predictor variables which may be 

difficult to uncover using traditional multivariate techniques.  
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Lewis (2000) used CART techniques for clinical studies, stating that traditional 

statistical methods are sometimes poorly suited for multiple comparisons.  Lewis states 

that predictor variables are seldom normally distributed and complex interactions or 

patterns may exist in the data, making it difficult to develop a reliable clinical decision 

rule without the assistance of CART.  When considering the difficulty in forecasting sea 

fog for Kunsan AB, and the large number of possible predictor variables, CART is a 

logical solution to use in this climatological research.  

Lewis (2000) described a classification problem as consisting of four main 

components.  The first component is a categorical outcome or dependent variable.  This 

target variable, advection sea fog for this research, is the characteristic to be predicted, 

based on the predictor variables which are the second component.  These predictors are 

the characteristics which are potentially related to the target variable of interest.  For this 

study, sea surface temperature, air temperature, and dew point depression are some of the 

predictors considered, which are gathered from surface observations and modeled upper 

air data.  The third component is a learning dataset, which is the dataset the model is built 

from, while the fourth component of the problem is a test or validation dataset, which is 

used to validate the model with independent data. 

1.3   Research Objectives 

 The occurrence of sea fog has been analyzed for many years.  Multiple studies 

were conducted at the Naval Postgraduate School for sea fog frequency off the California 

coastline, but few studies have been conducted for the seas surrounding Korea. Cho et al. 

(2000), conducted a study based on historical data on sea fog and investigated the 

relationship between sea fog occurrence and its environmental factors around the Korean 
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Peninsula.  Cho’s study determined which surface level predictors had a significant 

impact on sea fog occurrence, but failed to develop methods for forecasting the events in 

advance. 

 This research is unique in that it uses offshore analysis data from the Navy 

Operational Global Atmospheric Prediction System (NOGAPS) model, not just from the 

surface but through the 850 mb level, to find predictors relevant to the formation of sea 

fog that may not have been considered previously.  To determine which of these 

predictors may be of importance, the CART approach is applied to formulate a forecast 

decision tree. 

Upon gathering a reasonable sampling of data, the CART technique is used to 

determine a reliable method for forecasting advective sea fog with a 24-hour lead time.  

The overall goal of this research is to find some indicators in the meteorological data 

analyzed that would suggest a reliable forecast of advection fog at least 24 hours in 

advance.  The results of this research are then translated into an operational forecast 

decision tool (such as a conditional forecast decision tree) for use by forecasters and 

mission planners to increase weather intelligence capabilities at Kunsan AB.  

 The following specific objectives are necessary to achieve the overall goal of this 

research:  perform a geographical and climatological overview of the Kunsan AB area; 

define fog types and formation processes and how they relate to this region; collect sea 

surface temperature data, upper air data, and surface observational data for Kunsan AB, 

as well as upstream locations (both over land and the Yellow Sea); properly format and 

quality check all data to perform thorough statistical examinations in order to compare 

the dependent variable (sea fog) with various predictors; use data mining CART analysis 
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on all sets of data to determine predictive relationships of the predictors; if standard 

statistical methods fail to find any predictive relationships, develop forecast decision 

trees to assist in choosing the best predictors for forecasting advection fog, after detecting 

and verifying all statistical relationships; and finally provide the 8th OSS/OSW with a 

useful product to forecast advective sea fog for Kunsan AB. 
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II. Background and Literature Review 

 

2.1   Background 

Kunsan AB is located in southwest Korea, about 13 km southwest of the town of 

Kunsan, a port on the Kum River.  The base is bordered on the west and south by the 

Yellow Sea (Fig. 1).  The terrain immediately to the north and east is rugged, consisting 

of numerous hills reaching heights of 27 to 37 meters.  About 55 km to the north is an 

east-west oriented range, with heights approximately 600 meters above sea level.  This 

range is high enough to have significant effect on air moving over Kunsan from the 

north.  Farther east is the Sobaek Range, which forms a north-south interior divide on the 

Korean peninsula.  These mountains have a maximum elevation of 1,067 meters, but 

have little effect on the weather at Kunsan. 

SOUTH KOREA

YELLOW 
SEA

SEA
OF

JAPAN
SOUTH KOREA

YELLOW 
SEA

SEA
OF

JAPAN

 
Figure 1. Map of South Korea (adapted from Microsoft, 2001). 
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There are four major surface ocean currents off the shores of the Korean 

peninsula (Fig. 2), with the Yellow Sea Current impacting Kunsan AB the most.  The 

Yellow Sea is a shelf sea with maximum depth of less than 100 meters (Cho et al. 2000).  

The Yellow Sea Current flows with variable speeds and directions depending on the time 

of year. It is at its strongest in winter, and is driven south along the coastline by northerly 

winds.  In winter, warm currents parallel the south and southeast coasts, while waters off 

the west coast are colder because of the direction of flow of the Yellow Sea Current from 

the north and the shallowness of the Yellow Sea (607th WS, 1998).  With the weakening 

of the northerly winds, the Yellow Sea Current becomes variable in speed and direction 

by the end of March.  By June, the Yellow Sea Current is reversed along the southwest 

coast, and begins to move northward along the western shores.  Finally by July, the 

Yellow Sea Current develops into a closed cyclonic circulation off the west coast of 

Korea, which causes an upwelling effect and provides conditions favorable for sea fog 

formation.  It is this sea fog which on occasion advects onto the western coastal areas. 

2.2   Fog Formation 

Before discussing the processes involved with fog formation, the various classifications 

of fog involved with this study must be defined.  According to Glickman (2000), fog is 

defined as “water droplets suspended in the atmosphere in the vicinity of the earth’s 

surface that affect visibility.”  As the relative humidity increases gradually towards 100 

percent, condensation begins on the nuclei.  The available nuclei have water condensing 

onto them, until they eventually become visible to the naked eye (Ahrens 1994).  Once  
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Figure 2.  Ocean currents surrounding the Korean Peninsula for (a) Winter (b) Summer (adapted 

from 607 Weather Squadron, 1998). 
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the air is filled with millions of tiny floating water droplets, a cloud is visible near the 

ground which is termed fog.   

Advection fog is caused by the movement of moist air over a cold surface, and the 

consequent cooling of that air to below its dew point temperature.  Sea fog is a type of 

advection fog formed when air that has been lying over a warm surface is transported 

over a colder water surface, resulting in cooling of the lower layer of air below its dew 

point temperature.  Depending on the wind speed and fetch over water, the interaction 

between the cooler surface layer and the overlying air may result in low-level stratus as 

well as fog formation.  Advection fogs prevail in locations where two ocean currents with 

different temperatures flow next to one another (Ahrens 1994).  A common location for 

this is off the coast of Newfoundland in the Atlantic Ocean.  The cold southward flowing 

Labrador Current lies almost parallel to the warm northward moving Gulf Stream.  Warm 

southerly air advecting over the cold current produces fog in that region two out of three 

days during summer (Ahrens 1994).  It is this same type of advective sea fog which is a 

major forecasting problem at Kunsan AB.    

Fog occurs in the lower atmosphere with a height of a few meters, a few tens of 

meters, or at most hundreds of meters in vertical extent, where the strongest atmospheric 

influence is the air temperature and water vapor content.  Over land, and particularly in 

the warm season when sea fog is most prevalent, it is difficult to distinguish between 

radiation fogs and advection fogs (Petterssen 1956).  Most land fogs develop as a result 

of advection followed by radiative cooling.  Since the diurnal variation of temperature is 

large over land, most fogs tend to form in the late evening and dissipate after sunrise.  At 

sea however, the diurnal variation of temperature is small (generally less than 0.5ºC).  
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Nocturnal cooling plays only a negligible part while air advection is the primary cause of 

fog formation.  Instead of dissipating after sunrise like radiation fog, a sea breeze which 

develops in the late morning can advect the fog inland, where it may persist through the 

entire day. 

Like other general fogs, sea fog forms when the air is saturated and reaches a 

degree of supersaturation through some atmospheric process (Binhua 1985).  There are 

two ways to increase relative humidity for air saturation, increasing the vapor pressure 

and lowering the air temperature.  Generally speaking, the formation of sea fog is caused 

by the process of either evaporation or cooling (Binhua 1985).  When the two processes 

occur simultaneously, the effect is more significant. 

 For the formation of sea fog, an increase in moisture takes place under specific 

conditions.  Increasing moisture is due to the evaporation of water from the sea surface 

and mixing of air (where moisture decreases in one part of mixing air while increasing in 

another).  Evaporation can only occur when the saturation vapor pressure ew over the 

water surface is higher than the vapor pressure e in the air, and the saturated vapor 

pressure of the air ea is much lower than e.  In simple notation, only when  

ew> e> ea           (1) 

can evaporation increase vapor content in the air, which is favorable for the formation of 

fog (Binhua 1985).  Therefore, evaporation can continue only when the sea surface 

temperature is higher than the air temperature.  In other words, only when a cold air mass 

moves over a warm water surface can sea fog form through continuous evaporation.  Sea 

fog formation through continuous evaporation is also known as steam fog, and can be 
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seen over lakes on autumn mornings, when cooler air settles over water still warm from 

the summer season. 

 The second process involved with the formation of fog is cooling.  Cooling occurs 

with one or more of the following processes:  (1) outgoing long-wave radiation and 

resultant cooling of the near-surface air; (2) advection of air over a colder surface; 

(3) adiabatic cooling by orographic, frontal, or turbulent lifting; and (4) evaporative 

cooling by falling precipitation (Venne 1997).  The focus of this study is mostly dealing 

with cooling caused by advection of air over a colder surface. 

 The main feature of advection fog is the presence of an advective motion 

component of air over the sea surface.  Both sensible heat exchange and latent heat 

exchange can occur between the sea surface and the air flowing over it (Binhua 1985).  

The exchange of sensible heat and latent heat during the formation of sea fog varies with 

the difference between the air temperature, water temperature, and the relative humidity 

of the air.  Generally speaking, when the air temperature is higher than the water 

temperature, the sensible heat transfer from air to sea dominates. This is favorable for fog 

formation by condensation due to cooling of warm air near the surface advecting over the 

cooler sea surface.  Such fog is known as advection cooling fog, with the dew point 

temperature equal to the surface water temperature.  If the surface water temperature is 

too high, advection cooling fog cannot form.  On the other hand, when the air 

temperature is lower than the water temperature, sea water will be evaporated into the 

cold air increasing the water vapor content.  Such fog is known as advection evaporation 

fog (or steam fog as previously mentioned).  Its formation and dissipation are determined 

by the range between air temperature and water temperature, as well as saturation vapor 
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pressure ew corresponding to the surface water temperature and the actual vapor pressure 

in the air e.  If the temperature range between air and water is large, the evaporation of 

the water surface will continue to increase water vapor content in the air.  In this case, 

even if the wind is strong, it is possible that the fog will persist (Binhua 1985).  

The formation and dissipation of sea fog are related to hydrological factors, 

among which the local sea current and surface water temperature are the most significant 

(Binhua 1985).  Meteorological factors such as air temperature, humidity, wind, and 

stability also play key roles.  As can be seen from the distribution and variation of sea fog 

in Figures 3 through 6, the fog favored regions are closely related to the locations of 

major sea currents.  In regions near the shore, such as in the eastern Yellow Sea, fog 

often occurs where the cold and warm currents meet. 

 Sea surface temperature, in addition to sea current motion, is one of the most 

important factors in the occurrence of sea fog.  Figure 7 shows the mean sea surface 

temperature in winter and summer around the southern Korean peninsula.  There are a 

few noticeable cold water regions depicted in the Yellow Sea during the early summer, 

which are consistent with the high frequency of sea fog occurrences during this time.  

The cold regions are characterized by shallow water under the strong tidal currents.  The 

shallow water and currents provides enough energy to mix the water column, resulting in 

a relatively cold sea surface (Cho et al. 2000). 
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Figure 3.  Percentage of fog, January (from Guttman, 1971). 

 
 

 
Figure 4.  Percentage of fog, April (from Guttman, 1971). 
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Figure 5.  Percentage of fog, July (from Guttman, 1971). 

 
 

 
Figure 6.  Percentage of fog, October (from Guttman 1971). 
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A study on monthly mean frequencies of sea fog occurrences was conducted by 

Cho et al. (2000) for nine coastal and 15 island stations around South Korea.  The 

average rate of occurrence showed that most sea fog occurs during the summer season 

(Fig. 8), which is similar to the formation of sea fog around the United Kingdom, where 

sea fog most commonly occurs in spring and early summer (Roach 1995).  Cho et al. 

(2000) also concluded the mean frequency of sea fog occurrence in the Yellow Sea is 

higher than that of the Sea of Japan.  Considering that both the Yellow Sea and Sea of 

Japan are located at the same latitude, this difference most likely result from the 

difference in sea surface temperatures. 

 The formation of sea fog cannot be determined solely from the evaluation of air 

and sea surface temperatures.  The maximum water vapor content at low levels and its 

variation to surface water temperature must also be considered.  As part of their sea fog 

study, Cho et al. (2000) collected dew point temperature data and made comparisons to 

sea surface temperatures.  It was shown that the highest frequencies of fog (more than 

30%) occurred when the difference between the dew point and sea surface temperature 

was greater than 2º C.  The frequency of fog increases with a higher difference between 

the two values.  It is generally accepted that higher dew points relative to the sea surface 

temperature increases fog probability.  If the dew point at the initial forecast time is less 

than the coldest water temperature, the formation of fog is unlikely (5 WW 1979). 
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Figure 7.  Mean sea surface temperature in (a) Dec and (b) Jun (adapted from Cho et al., 2000). 
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Figure 8.  Mean frequency day of sea fog occurrence for (a) Jan and (b) Jul (adapted from Cho et 
al., 2000). 
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2.3   Physical Properties of Sea Fog 

The density and visibility within sea fog depends on the number concentration 

and size of fog droplets, as well as liquid water content (Binhua 1985).  Neiburger and 

Wurtele (1949) analyzed observations of visibility and relative humidity off the coast of 

Los Angeles, California (Fig. 9).  It is shown that, on average, the visibility decreases 

almost uniformly as the relative humidity increases, with the decrease being due to 

further condensation on the nuclei as air parcels approach saturation (Petterssen 1956). 

 Under certain conditions, Koschmieder (1924) proposed a formula for the visual 

range V in a fog as: 

     V=[log(1/ε)] / πr2n          (2) 

where V is the visibility in centimeters, ε is the ratio of the difference in brightness 

between the background and the object to the brightness of the background, n is the 

number of drops per cubic centimeter, and r is the average radius of the drops in µm.  In 

most cases, ε is in the range of 0.01 to 0.02.  It is seen from Eq. (2) that the visual range 

is inversely proportional to the total projected area of the drops.  Taking ε as a constant, 

Eq. (2) may be written as: 

     V=[C rm] / wL              (3) 

where C is a constant, rm is the radius of the fog drop in µm, and wL is the liquid water 

content in g/m3.  For any given liquid water content, the visual range decreases as the 

radius of the fog drops decrease.  Cloud condensation nuclei are sparse in maritime air, 

more plentiful in continental air, and abundant in urban air (Orgill 1993).  Therefore, in 
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sea fog, where the drops are relatively large, the visual range would be larger than in a 

city fog, where the drops are numerous and small. 
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Figure 9.  Relation between visibility and relative humidity at Los Angeles Airport (adapted from 
Neiburger and Wurtele, 1949). 
 
 
 The density of a sea fog expressed in terms of horizontal visibility depends not 

only on the concentration of fog drops, but also on the liquid water content within the 

fog.  The distribution of liquid water in fog is relatively uniform over large horizontal 

areas (Wallace and Hobbs 1977).  The larger the liquid water content, the greater the 

density of fog and the lower the visibility.  Measurements of liquid water content were 

taken during the period of June 15-23, 1951, by the Japanese research ship Yksek Maru 

(Binhua 1985).  The results showed that the liquid water content in sea fog averaged in a 

range of 0.1 g/m3 to 2.0 g/m3.  The average liquid water content range for land fog is 0.01 
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g/m3 to 1.0 g/m3.  In general, the liquid water content in sea fog tends to be higher than 

that for land fog. 

In a fog region, the concentration of fog drops is defined as the number of fog 

drops per unit volume.  The number and concentration of fog drops decrease if there is an 

increase in the diameter of the drops given a specific liquid water content (Fig. 10).  Fog 

that forms in dirty city air is often thicker than fog that forms over the ocean.  The 

smaller number of condensation nuclei over the ocean produce fewer, but larger, fog 

droplets. City air, which has abundant nuclei, will produce smaller droplets, but at a 

much greater concentration since the nuclei compete for moisture.  The concentration of 

fog drops varies not only with size, but also with temperature variation.  When the air 

temperature is high and evaporation vigorous, large fog drops may become smaller, and 

small drops may vanish completely due to this evaporation. 
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Figure 10.  Number of fog drops in relation to their diameter (adapted from Binhua, 1985). 
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2.4   Dissipation 

Fogs have a tendency to dissipate through heating.  There is a marked diurnal 

variation in the frequency of fogs, with a maximum in the early hours and a minimum in 

the later afternoon.  Naturally, a shallow fog will tend to burn off at a higher rate than a 

deep fog.  Most advection fogs are relatively deep, and the deeper ones will withstand 

diurnal heating (Petterssen 1956).  The same is true for fogs which have formed as a 

result of advection followed by radiation.  Since the variation of temperatures over 

oceans is typically small, sea fogs are not as sensitive to diurnal variations as land fogs. 

 A light fog without much pollution will have an average liquid water content of 

0.03 g/m3, while a dense fog may have a value in excess of 0.3 g/m3 (Petterssen 1956).  

In order to dissipate a fog, the liquid water needs to be evaporated and the air temperature 

must be increased so the water vapor resulting from evaporation can be accommodated in 

the air.  When the air temperature is high, only a slight increase is necessary to 

accommodate the fog water, but a much greater temperature increase is needed with low 

air temperatures.  Fogs that occur at higher temperatures are more sensitive to diurnal 

variations, while fogs over colder surfaces may persist all day.   

 One mechanism for dissipating advection fogs near coastlines is the advection 

over warmer surfaces heated by solar radiation or heated artificially (Orgill 1993).  

During the dissipation, the fog top moves upward, apparently in response to the increase 

in turbulence that accompanies the development of an unstable temperature layer over the 

warmer surface.  However, fog movement over a warmer surface is not necessarily 

sufficient for complete dissipation unless the heat from the surface is distributed 

throughout the fog layer (Orgill 1993). 
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 This past chapter described the geography of the region and its impacts to the 

local climate at Kunsan AB.  In addition, details on the dynamics of fog formation were 

reviewed, with specific emphasis on the formation of sea fog.  It was determined that 

hydrological factors and weather conditions within the lower levels of the atmosphere are 

the most significant for forecasting sea fog phenomena. Using this knowledge, data 

containing these elements were analyzed for further study. 

  

 

 

 

 



 24

III. Data Collection and Review 

 

3.1 Data Collection 

 The period of record (POR) examined in this research is from 1 January 1993 

through 31 December 2002 in order to provide a 10 year sample size.  Three different 

sets of data were examined, with multiple variables within each data set.  Surface weather 

observations for Kunsan AB, ROK and sea surface temperature data for the Yellow Sea 

were obtained from AFCCC databases.  Upper air grid data for the Yellow Sea region 

were obtained from the Navy Operational Global Atmospheric Prediction System 

(NOGAPS) model, originating from the Fleet Numerical Meteorology and Oceanography 

Center (FNMOC). 

 3.1.1 Kunsan AB, ROK Weather Observations.  The Kunsan AB weather flight is 

responsible for providing hourly Aviation Routine Weather Reports (METAR) for the 

base airfield.  The operating hours are seven days a week, 24 hours a day.  The observing 

site is located at 35°55'N, 126°37'E and is at an elevation of 29 feet.  The POR for the 

observations was 10 years, culminating in 101,249 total surface observations.  

METAR is a routine scheduled observation as well as the primary observation 

code used by the United States to satisfy requirements for reporting surface 

meteorological data (AFMAN 2001).  It contains a report of wind speed and direction, 

visibility, sky condition, present weather, temperature, dew point, and altimeter setting.  

Normally, points of observation are confined to an area within two statute miles of the 

observing station, to include phenomena affecting the runway complex, drop zones or 

landing zones.  METAR observations normally reflect the conditions observed at, or seen 



 25

from, the usual point of observation within 15 minutes of the time ascribed to the 

observation (AFMAN 2001).   

The observations taken at Kunsan AB for the POR were obtained by a certified 

weather observer, as opposed to an automated observing system.  Limited observer 

visibility to the northwest makes detection of advection fog difficult for the Kunsan 

airfield (607th WS 2002).  Therefore, while sea fog may have advected into the operating 

area, documentation may not exist due to observer limitations.   

 3.1.2 Sea Surface Temperature (SST) Data.  SST data were obtained from the 

Surface Temperature (SFCTMP) model produced at the Air Force Global Weather 

Central (AFGWC) and collected from the archives at AFCCC.  The POR was from 1993 

to 2002 and contains surface temperatures from 2816 grid points in the East Asian region.  

Each grid point contains the surface temperature every three hours, for a total of 8 

observations each day.  For the purposes of this study, only four of the 2816 grid points 

were used to correspond with the upper air data obtained from the NOGAPS model. 

The SFCTMP model primarily supports the AFGWC Real-Time Nephanalysis 

(RTNEPH) model at Offutt AFB, Nebraska.  The RTNEPH model requires the surface 

temperature data to make a cloud/no-cloud decision in its infrared thresholding algorithm 

(Kopp 1995).  SFCTMP runs separate analyses for the northern and southern 

hemispheres, with each hemisphere mapped onto a polar stereographic grid with 1/8th-

mesh resolution. The array of gridpoints in each hemisphere is organized into 64 boxes, 

laid out in an 8 x 8 array (Fig. 11). 

Navy SSTs are received once every 12 hours at AFGWC from FNMOC over a 

whole mesh grid (2.5 x 2.5 degree latitude/longitude).  These data are ingested into the 
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Sea-Surface Processor, which is responsible for skin temperature analyses over all ice-

free water points. The data are then remapped over the smaller grid used by SFCTMP.  

 

 

Figure 11.  Polar stereographic grid for RTNEPH model (Department of the Air Force, 1986).  
The highlighted box is the area of interest for this study. 

The SSTs then undergo a data quality check each six hour cycle.  If any water point 

contains a temperature colder than 270° K or warmer than 310° K, all SSTs in that 
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RTNEPH box are carried over from the previous cycle (Kopp 1995).  This procedure 

prevents unrealistic SSTs and avoids an excessively noisy analysis. 

 3.1.3 Upper Air Data.  Upper air data for a POR from 1993 to 2002 was gathered 

from the NOGAPS model output for the Yellow Sea region.  NOGAPS data was obtained 

on a 2.5 x 2.5 degree latitude and longitude grid, with analysis times of 00Z, 06Z, 12Z, 

and 18Z daily.  Data was collected from a variety of sources; such as land stations, ships, 

buoys, aircraft, RAOB’s, and satellites.  The data originates from FNMOC and is sent via 

the Air Force Weather Agency (AFWA) to AFCCC. 

 The NOGAPS data for this study are considered to be reliable, considering the 

techniques used to process the information.  Optimum interpolation (OI) is an analysis 

technique which takes into account three factors:  distance between the observation and 

the grid point, accuracy of the observing instrument, and expected accuracy of the first 

guess (Department of the Air Force 1991).  The first factor, distance between the 

observation and grid point, is the foundation of nearly every numerical analysis scheme.  

This factor assigns a weight to the observations around each grid point, with the weight 

decreasing exponentially with distance.  The closer the observation to the grid point, the 

more weight it receives.  Another advantage of OI is its ability to account for differences 

between various instruments used to record observations.  Every instrument is assigned 

an expected error; the lower the expected error, the more weight the observation from 

that instrument will have in the analysis.  For example, an 850 mb temperature recorded 

from a Rawinsonde Observation (RAOB) will have more influence in the analysis than 

an 850 mb temperature  
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Less error 
assigned to 
RAOB than
Satellite at 
850mb level

Less error 
assigned to 
RAOB than
Satellite at 
850mb level

 
Figure 12.  Sample of instrument errors (adapted from Department of the Air Force, 1991). 

 
 

measured from a satellite (Fig. 12).  The reverse would be true for temperature 

measurements at levels above 250 mb.  Finally, OI considers the expected accuracy of 

the model’s first guess by producing error fields, estimating how accurate the analysis is 

at each grid point.  When more observations are available at a particular location, the 

expected error will be lower, producing a more accurate analysis.  For data rich areas 

such as Europe and Asia, there will be less error than for data sparse areas like the South 

Pacific.  In addition, an inaccurate observation taken in one of the data rich areas will 

have less impact on the analysis.  The techniques used by OI increase the likelihood of 

accurate analyses, and given the data rich region of this study, the data obtained for this 

research can be considered reliable.   
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The data used for this research included temperature, dew point depression, wind 

direction and wind speed for the surface, 1000 mb, 850 mb, 700 mb, 500 mb, and 300 mb 

levels.  These data include four points covering a square grid west of Kunsan:  

122.5E/35N, 125E/35N, 122.5E/37.5N, and 125E/37.5N (Fig. 13).  While data were 

acquired from the surface through 300mb, only the lower atmospheric levels (surface to 

850mb) were evaluated as predictors for this study, since sea fog is a lower atmospheric 

phenomenon. 
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Figure 13.  NOGAPS grid points used in this study. 

3.2 Data Limitations 

 A major concern within this research is the relatively short POR of ten years.  

There are a limited number of sea fog events which impacted Kunsan to analyze within 

the surface observational data.  While sea fog generally moves directly into Kunsan AB 
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from the southwest, it is possible for it to advect on land further to the west, impacting 

other operating areas.  On these occasions, a lack of observational data may occur due to 

the limitations of the weather observer’s in detecting this phenomenon to the northwest, 

where sea fog may have advected into the operating area, but not the airfield itself. 

 A second limitation with the research data is the NOGAPS grid.  While the grid 

box does cover a large portion of the Yellow Sea, there are no data points available for 

the area immediately to the west of Kunsan.  Since past authors have found SST is the 

most significant predictor to sea fog formation, the lack of SST data directly west of 

Kunsan may have an impact on determining an exact relationship between the predictor 

variables and sea fog occurrence at Kunsan. 

 Finally, some of the data sets had incomplete, erroneous, or missing information.  

Each of the data sets was carefully reviewed and corrections or deletions were made 

based on the extent of the errors or absent information.  Details on the processes used 

during quality control are described in the next chapter. 
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IV. Methodology 

 

 This objective of this chapter is to examine the data and focus on producing 

conditional climatology to aid forecasters in predicting low visibilities associated with 

advective sea fog.  The visibility categories evaluated are derived from the airfield 

minimum categories used in the Operational Climatic Data Summary (OCDS) from 

AFCCC (2000).  Table 1 is a sample of the frequency for ceilings of 3000 feet and/or 

visibility less than three statute miles.  The table shows the percent frequency of 

occurrence for each month during different times of the day in Local Standard Time 

(LST).  According to the OCDS, the highest probability of visibility dropping below 

three miles occurs during June and July, which is consistent with the seasonal frequency 

of sea fog.  Typically for most locations, the highest probability of visibility dropping 

below category is in the early to mid morning hours when the air temperature approaches 

the dew point temperature.  During June and July at Kunsan AB, the probabilities remain 

relatively high throughout the day, which is common with a sea fog event.   

Table 1.  Percent frequency of ceiling/visibility less than 3000 feet/3 statute miles. 

LST Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec All 
0-2 24 24 20 21 23 37 37 19 16 14 21 23 23 
3-5 30 28 26 28 30 50 48 29 26 23 25 28 31 
6-8 32 32 35 37 36 61 58 39 35 30 29 32 38 

9-11 31 28 29 26 27 47 45 25 19 19 24 31 29 
12-14 22 20 17 18 17 30 30 14 8 8 14 22 18 
15-17 21 19 16 17 15 24 23 13 9 6 13 23 16 
18-20 24 20 16 18 17 25 25 14 11 6 12 22 17 
21-23 26 21 17 18 20 31 30 15 9 8 14 21 19 
ALL 27 24 22 23 23 39 37 21 17 14 19 25 24 
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4.1  Data Examination 

An examination of the data sets was necessary to determine a correlation between 

the multiple weather parameters and the occurrence of sea fog. Prior to any statistical 

studies being performed, extensive formatting was required on the data sets to ensure 

they were usable for regression and data mining tests.  This process involved extensive 

manipulation of the three different sets of data:  Kunsan AB surface observations, 

NOGAPS upper air, and SST. 

4.1.1  Surface Observational Database.  Upon receiving the Kunsan AB surface 

observations, quality control (QC) was performed on the data.  The review was 

conducted to determine any typographical errors or locate missing data.  There were 

several cases in 1996 and 1997 when visibility was less than seven statute miles, but 

present weather condition data was missing.  This particular category is important for this 

research as it is necessary to distinguish between the causes of reduced visibilities, 

whether it is due to fog, snow, rainshowers, etc.  In the event of missing weather 

information, present weather was manually inputted, as long as the inputted data was 

supported by meteorological reasoning.  For example, if the surface observations prior to 

or after the observation in question contained reduced visibilities with mist (BR), or BR 

was mentioned in the remarks section of the observation, then BR was inputted into the 

data gap.  If there were sections of data with excessive missing information, and there 

were doubts as to the specific weather conditions, the observation was not used for this 

study.   

Upon completion of the QC, classification was completed on the present weather 

conditions.  The goal was to isolate those weather events where visibility was reduced 
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specifically by BR or fog (FG) from the snow, dust, or rain events.  AFMAN 15-111 

(2001) defines BR as “hydroscopic water droplets or ice crystals suspended in the 

atmosphere that reduces visibility to less than 7 miles but equal to or greater than 5/8 

mile.”  FG is similar to BR, but with visibilities less than 5/8 mile.  For the purposes of 

simplifying the data set for this research, all weather events that are defined as either BR 

or FG were reclassified as BR.  Therefore, if a weather observation has ½ mile visibility 

with present weather FG, it was reclassified as BR. 

 

4.1.2 NOGAPS Upper Air Data.  The second set of data contained the 

atmospheric conditions for each of the four grid points depicted in Figure 13.  The data 

were provided every six hours beginning at 00Z for the ten year POR.  QC was 

performed on the data to located missing information and erroneous values.  For any 

missing data points, the information from the previous six hour model run was used to fill 

the data gap.  If data were missing for two or more consecutive model runs (12 or more 

hours), the weather information for that time period was not used for the study.  In 

addition, any erroneous data located in the model run (a value of 5000 listed for dew 

point depression) was replaced with the value from the previous six hour model run.  

Upon completion of QC, the NOGAPS data were inputted into an Excel workbook, with 

a specific sheet for each of the four grid points.  

For the purposes of using the information in statistical and forecast decision tree 

programs, it was necessary to merge the surface observations for Kunsan AB and the 

NOGAPS data into one datasheet.  NOGAPS had one set of values for 00Z, 06Z, 12Z, 

and 18Z, while the surface observations contained a minimum of one entry per hour.  In 
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order to synchronize the surface observations and NOGAPS data on one spreadsheet, the 

surface observations were reduced from 24 or more a day to four. To accomplish this 

task, the observations for 00Z, 06Z, 12Z, and 18Z were highlighted for study. The 

weather information for the previous six hours from each of those highlighted 

observations was evaluated to determine the average conditions.  These average 

conditions were inputted into the NOGAPS spreadsheet for each of the four time periods 

of interest.  In events of reduced visibilities due to fog, the minimum visibility to occur 

during the six hour time period was used in the final spreadsheet.  The Kunsan AB 

surface observations were inputted into worksheets for each of the four NOGAPS grid 

points. 

The objective of this study was to produce a tool for providing a 24 hour forecast 

of sea fog advecting into the Kunsan operating areas.  In order to do this, the surface 

observations were aligned with the NOGAPS data from the previous 24 hours. For 

example, a 00Z surface observation for 2 January 2000 was inputted next to the 00Z 

NOGAPS value for 1 January 2000.  The purpose was to isolate the fog events, and relate 

them to the atmospheric conditions which were occurring 24 hours previously, locating 

parameters that may lead to sea fog formation. 

4.1.3 SST Data.  The final data set to be examined contained the SST from the 

SFCTMP model, covering the 10 year POR.  The original dataset contained values every 

three hours with 2816 grid points covering the boxed area depicted in Figure 11.  To 

maintain consistency, the SST data were formatted for inclusion into the main NOGAPS 

spreadsheet.  
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The first step was to focus on the SST grid points that were located in close 

proximity to the four selected NOGAPS grid points.  This involved reducing 2816 grid 

points down to four by comparing the NOGAPS grid in Figure 11 to Figure 13.  Next it 

was necessary to ensure the time periods of the SST coincided with those already 

selected for the NOGAPS and surface observations.  This was a simple procedure 

involving the removal of the 3Z, 9Z, 15Z, and 21Z from the datasheet, leaving the four 

selected times of interest.  The SST data were then inputted into the main spreadsheet, 

with the data times and grid points aligned with the NOGAPS data.  Any time period 

with missing SST data was excluded from the study. 

4.1.4 Results.  The result for the first part of the objective was a thorough dataset 

to be used for further statistical and data mining study.  This dataset contains the 

observed weather conditions at Kunsan AB aligned with upstream atmospheric and sea 

surface temperature conditions for the preceding 24 hour time period.  There is a separate 

worksheet for each of the chosen grid points.  The next step in the study involves 

individually testing the target variable against the predictors for each of the four grid 

points, and determining if a specific upstream location has a greater impact on sea fog 

advection at Kunsan AB. 

 

4.2 Statistical Analysis 

 Regression methods have become an integral component of any data analysis 

concerned with describing the relationship between a target variable and one or more 

predictor variables.  The target variable for this research has only two qualitative 

outcomes, and is represented by a binary indicator variable taking on values of 0 
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(visibility greater than 4800 meters) or 1 (visibility less than or equal to 4800 meters).  In 

many fields, the logistic regression model has become the standard method of analysis in 

a categorical situation (Hosmer and Lemeshow 2000). 

  

4.2.1 Logistic Regression.  The difference between logistic regression and the 

more familiar linear regression is reflected in the use of a binary outcome variable.  Once 

this difference is accounted for, the methods employed in an analysis using logistic 

regression follow the same general principles used in linear regression.   

 The accuracy of a model is typically judged by the coefficient of determination 

R2.  R2 can be interpreted as the proportion of the variation of the predictand that is 

described or accounted for by the regression (Wilks 1995).  R2 values rarely reach unity, 

and higher values typically indicate better effectiveness.  However, this is not the case in 

logistic regression.  Hosmer and Lemeshow (2000) displayed several examples where the 

value of R2 was relatively low when compared to R2 values typically encountered with 

good linear regression models.  Low R2 values in logistic regression are the norm and 

present a problem when reporting their values to an audience accustomed to seeing linear 

regression values.  Therefore, R2 values were not considered with this research.  For a 

more detailed discussion on the specifics of logistic regression, reference Hosmer and 

Lemeshow (2000).   

  

4.2.2 Logistic Regression Results.  It is important to determine if there is a 

relationship between the target variable and the predictors early in the research.  To do 
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this, initial testing was performed using a statistical software program from the SAS 

Institute called JMP.   

 Nominal logistic regression was used when running the tests in JMP.  Nominal 

logistic regression estimates the probability of choosing one of the response levels as a 

smooth function of the target variable.  The fitted probabilities must be between 0 and 1, 

and must sum to 1 across the response levels for a given target (SAS Institute 2000).   

 Two values calculated in JMP were considered when reviewing the significance 

of the predictor variables to the target variable:  Chi-Square and Prob>ChiSq.  Chi-square 

is the likelihood-ratio Chi-square test of the hypothesis that the model fits no better than 

fixed response rates across the whole sample.  Typically, the higher the value of Chi-

square, the more significant the predictor variable is to the target.  Prob>ChiSq is the 

observed significance probability, often called the p-value, for the Chi-square test.  It is 

the probability of getting, by chance alone, a Chi-square value greater than the one 

computed.  Models are often judged significant if this probability is below 0.05 (SAS 

Institute 2000).   

 The data from each of the four grid points in the Yellow Sea were individually 

inputted into JMP to test for the significance of the predictor variables to the formation of 

sea fog.  The target variable for these tests was Fog < 4800 meters.  The predictor 

variables used in JMP, along with a brief description of each variable, are listed in Table 

2.  For each grid point, there were thirteen predictor variables considered in the research.  

The Chi-Square and p-value (Prob>ChiSq) results for the variables from each of the grid 

points is displayed in Tables 3 through 6.   
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Table 2.  Predictor variables used in JMP. 

Predictor Description 
Deg C SST Sea surface temperature in degree Celsius 
SFCTEMP Surface temperature at grid point 
SFCDPD Surface dew point depression at grid point 
SFCDIR Surface wind direction at grid point 
SFCSPD Surface wind speed at grid point 

1000TEMP 1000mb temperature at grid point 
1000DPD 1000mb dew point depression at grid point 
1000DIR 1000mb wind direction at grid point 
1000SPD 1000mb wind speed at grid point 
850TEMP 850mb temperature at grid point 
850DPD 850mb dew point depression at grid point 
850DIR 850mb wind direction at grid point 
850SPD 850mb wind speed at grid point 

 

Table 3.  JMP results for Grid Point A. 

Term Chi-Square p-value 
Deg C SST 26.24 <0.0001 
SFCTEMP 0.05 0.8166 
SFCDPD 21.65 <0.0001 
SFCDIR 8.20 0.0042 
SFCSPD 3.45 0.0631 

1000TEMP 4.04 0.0445 
1000DPD 8.58 0.0034 
1000DIR 8.57 0.0034 
1000SPD 36.66 <0.0001 
850TEMP 17.63 <0.0001 
850DPD 44.66 <0.0001 
850DIR 4.33 0.0375 
850SPD 27.69 <0.0001 

 

 Reviewing the information in Table 3, it can be seen that Deg C SST, 1000SPD, 

850SPD, and 850DPD are the most significant predictors for grid point A.  The overall 

Chi-square calculated for this location was 950.2238, with a p-value of <0.0001.  This 

indicates there is a low probability of getting a higher Chi-square by chance alone.  
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Table 4.  JMP results for Grid Point B. 

Term Chi-Square p-value 
Deg C SST 46.42 <0.0001 
SFCTEMP 0.05 0.8275 
SFCDPD 6.53 0.0106 
SFCDIR 9.69 0.0019 
SFCSPD 5.94 0.0148 

1000TEMP 0.02 0.8915 
1000DPD 66.74 <0.0001 
1000DIR 6.25 0.0124 
1000SPD 26.40 <.0001 
850TEMP 2.99 0.0840 
850DPD 20.04 <0.0001 
850DIR 0.70 0.4018 
850SPD 10.55 0.0012 

 

 In Table 4, Deg C SST was an important predictor, as well as 1000DPD, 

1000SPD, and 850DPD.  The overall Chi-square value was 907.9326 with a p-value of 

<0.0001.  For grid point C shown in Table 5, 850DPD had the highest value, followed by 

SFCDPD and Deg C SST.  The overall Chi-square was 1072.539 and the p-value was 

<0.0001. 

Table 5.  JMP results for Grid Point C. 

Term Chi-Square p-value 
Deg C SST 48.53 <0.0001 
SFCTEMP 0.11 0.7364 
SFCDPD 51.43 <0.0001 
SFCDIR 23.81 <0.0001 
SFCSPD 0.40 0.5273 

1000TEMP 8.20 0.0042 
1000DPD 2.72 0.0994 
1000DIR 0.01 0.9307 
1000SPD 19.79 <0.0001 
850TEMP 32.12 <0.0001 
850DPD 80.03 <0.0001 
850DIR 0.49 0.4838 
850SPD 30.10 <0.0001 
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Table 6.  JMP results for Grid Point D. 

Term Chi-Square p-value 
Deg C SST 82.71 <0.0001 
SFCTEMP 2.52 0.1121 
SFCDPD 34.22 <0.0001 
SFCDIR 14.86 0.0001 
SFCSPD 0.17 0.6792 

1000TEMP 8.40 0.0037 
1000DPD 40.42 <0.0001 
1000DIR 0.06 0.8069 
1000SPD 75.41 <0.0001 
850TEMP 20.87 <0.0001 
850DPD 36.58 <0.0001 
850DIR 3.83 0.0503 
850SPD 0.48 0.4875 

 

 Table 6 shows that Deg C SST is once again an important predictor, along with 

1000DPD, 1000SPD and 850 DPD.  The Chi-square value was 1146.565 with the p-value 

once again <0.0001.   

 One final modeling test, stepwise logistic regression, was run in JMP with the 

four difference datasets.  Stepwise selection of variables is widely used in regression.  

Employing a stepwise selection procedure can provide a fast and effective means to 

screen a large number of variables, and to fit a number of logistic regression equations 

simultaneously.  Any stepwise procedure for selection or deletion of variables from a 

model is based on a statistical algorithm that checks for the “importance” of variables, 

and either includes or excludes them on the basis of a fixed decision rule.  The 

“importance” of a variable is defined in terms of a measure of the statistical significance 

of the coefficient for the variable (Hosmer and Lemeshow 2000). 

 Stepwise logistic regression was performed in JMP for each of the datasets, with 

the results shown in Table 7.  The probability required to be used in the model was set at 
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0.05.  Predictor variables with a p-value value greater than 0.05 will be excluded from the 

model produced by stepwise regression.  The variables are listed in order of importance.  

In other words, the variables that contribute most to the target variable (formation of sea 

fog) are shown from most significant to least significant.  What these tables suggest is 

that SST and the upper air predictors have an impact on the formation of sea fog. 

Table 7.  Results from stepwise logistic regression performed on JMP. 

Grid Point A Grid Point B Grid Point C Grid Point D 
SFCDPD 1000DPD SFCDPD 1000DPD 
1000SPD 1000SPD 850DPD 1000SPD 
850DPD Deg C SST 1000SPD 850DPD 
SFCDIR 850DPD SFCDIR SFCDPD 
850SPD 850TEMP 850SPD Deg C SST 

850TEMP SFCSPD Deg C SST 850TEMP 
Deg C SST 850SPD 850TEMP SFCDIR 
1000DPD SFCDPD 1000TEMP 1000TEMP 
1000DIR SFCDIR   
850DIR 1000DIR   

1000TEMP    
 

 While using JMP has shown that each of the grid points has some predictor 

variables that relate to the target variable, they do not provide a means for developing a 

forecast decision tool.  It is necessary to establish specific numerical criterion for the 

predictor variables to aid forecasters in determining whether or not sea fog will advect 

into the Kunsan AB region.  To accomplish this goal, forecast decision trees are produced 

from a software program designed by Salford Systems called Classification and 

Regression Tree (CART) analysis, discussed in the next chapter. 



 42

 

V.  CART Overview, Method, and Results 

 

5.1 CART Overview 

 Classification and regression tree (CART) analysis is one of the main techniques 

employed in data mining (Benz 2003).  CART is a single procedure that can be used to 

analyze either categorical (classification) or continuous (regression) data.  A defining 

feature of CART is that it presents its results in the form of decision trees.  The tree 

structure of the output allows CART to handle massively complex data while producing 

diagrams that are easy to interpret.  

 The CART methodology is technically known as binary recursive partitioning 

(Breiman et al. 1984).  The process is binary because the root node is always split into 

exactly two child nodes and recursive by treating the child nodes as root nodes and 

repeating the process.  In order to split a root node into two child nodes, CART operates 

by determining a set of questions with “yes” or “no” answers that permit accurate 

prediction or classification of cases. For example, the question may be: 

Is TEMP <= 7°C? 

For each case the question is used to split the node by sending the “yes” answers to the 

left child node and the “no” answers to the right.  

 Once a best split is found, CART repeats the search process for each child node, 

continuing recursively until further splitting is impossible or stopped.  Splitting is 

impossible if only one case remains in a particular node, or if all the cases in that node 

have the same predictor variables.  CART also allows splitting to be stopped if the node 
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has too few cases, with the default lower limit set at ten cases for this research.  The total 

number of splits is determined by multiplying the total number of predictors by the 

amount of records in the data set.  For example, if there are ten predictors and 1000 

records, then there will be 10,000 different splits considered in formulating the optimal 

tree. 

 Once the maximal tree is grown, CART determines the best tree by testing for 

error rates or costs.  With sufficient data, the simplest method is to divide the sample into 

learning and test sub-samples.  The learning sample is used to grow an overly large tree, 

while the test sample is used to estimate the rate at which cases are misclassified.  The 

misclassification error rate is calculated for the largest tree and every sub-tree.  The best 

sub-tree is the one with the lowest or near-lowest cost. 

  

5.1.1 Tree Splitting Methods.  There are six different splitting functions available 

in the classification analysis:  Gini, Symmetric Gini, Entropy, Class Probability, Twoing, 

and Ordered Twoing.  The best known rules for binary recursive partitioning are Gini and 

Twoing, which were the two methods employed for this research.  Because each rule 

represents a different philosophy as to the purpose of the decision tree, each may grow a 

different style of tree. 

 The Gini rule looks for the largest class in the database, and strives to isolate it 

from all other classes.  For example, with two Classes, 0 and 1, the Gini rule would 

immediately attempt to pull all the Class 0 records into one node.  In theory, a perfect 

split would leave two pure child nodes of Class 0 and Class 1.  A pure decision tree is 

attainable only in very rare circumstances; in most real-world applications, database 
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fields that clearly partition classes are not available.  Gini will attempt to come as close to 

this ideal as possible by focusing on one class at a time.  It will always favor working on 

the largest class in the node.  Gini performance is frequently so good that it is the default 

rule in CART. 

 The Gini split searches for the best separation that produces a high amount of 

purity (homogeneity or lack of variety) in the node (Benz 2003).  The Gini impurity 

criterion for the dataset t is given by: 

     i(t) = 1 – S           (4) 

where S is the sum of the squared probabilities p(j / t) from each class.  For a two class 

example node with 50 observations, 40 in Class 0 and 10 in Class 1, the impurity 

calculation would be written as follows: 

    i(t) = 1 – [(40/50)2 + (10/50)2] =  0.32         (5) 

Therefore, the impurity calculated for the above sample node would be 32 percent. 

 An alternative splitting criterion in CART is the Twoing function, which operates 

by separating the classes into two groups that add up to 50 percent of the data.  The 

concept is based on class separation rather than node heterogeneity.  The objective is to 

make the likelihood that a given class j case goes to the left as different as possible from 

the probability that it goes to the right (Benz 2003).  The function sums the absolute 

value of the probability differences over all j classes, with the formula given as:  
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where p(j | tL) and p(j | tR) are the probabilities of an object being distributed into Class j 

given left and right terminal nodes respectively (Breiman et al. 1984). 
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 The rationale for the Twoing function is quite different from that of Gini.  For a 

multi-class problem, Twoing operates by dividing the classes into two groups, gathering 

similar classes together, and attempting to separate the two groups in the descendant 

nodes.  It thus treats every multi-class split as if it were a two-class problem. 

 For the two-class problem, such as this research, the Gini and Twoing criteria are 

mathematically equivalent.  The tree structures are the same, as is the overall predictive 

tree accuracies.  If there are multiple classes and the performances of the criteria differ 

substantially, Gini tends to yield the better splits and therefore is the default in CART 

(Salford Systems 2001).  

  

5.1.2 Priors.  To further assist the algorithm in making the best splits, the 

researcher must inform CART of the nature of the categorical class distribution (Benz 

2003).  When data are gathered from samples stratified on the target variable, the class 

proportions observed in the data may be far from the population proportions (Salford 

Systems 2001).  The method used for adjusting the analysis for this circumstance is 

known as Priors.   

 Priors equal is the default setting used in CART, and treats the classes in the 

sample as if they were uniformly distributed in the population regardless of the observed 

sample proportions.  With the priors equal setting, CART pays no attention to how rare a 

class is in the dataset.  Instead, CART looks at whether a given node is more or less rich 

in that class as compared to the root node.  This default setting frequently gives the most 

satisfactory results because each class is treated as equally important for classification 

accuracy (Salford Systems 2002).  Another setting is priors data, which means the 
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probabilities of each class occurring match the total sample frequency (Benz 2003).  The 

other options provided in CART are priors mix, learn, test, and specify, which are not 

evaluated for this research. 

  

5.1.3 Pruning Trees.  CART will continue to grow trees until it is not possible to 

grow them any further, either because it is no longer able to split or until the maximum 

node size is reached.  Breimen et al. (1984) recommends letting the splits continue until 

pure classification is achieved.  This pure result, containing thousands of nodes and 

thereby unrealistic to use in a climatological study, would then be pruned upwards 

providing results that have a more meaningful interpretation.   

  

5.1.4 Testing.  The best tree is determined by estimating its expected cost.  

Generally, using a separate test data set provides the most accurate assessment of the true 

error rate of a sequence of trees, providing there are a sufficient number of test cases.  

There are five testing options available in CART, two of which were used in this 

research:  cross validation and fraction of cases selected at random for testing.   

 5.1.4.1 Cross Validation.  10-fold cross validation is typically used when there is 

insufficient data available for a test sample, typically less than 3,000 observations.  

However, cross validation can also be useful when analyzing a dataset with a rare target 

class, such as sea fog which is the target in this research.  In this instance, the total 

number of observations is well above 3,000, but the class of interest has only a small 

proportion of records.     



 47

 Using cross validation, CART grows a maximal tree on the entire learning 

sample.  This is the tree that will be pruned back.  CART then proceeds by dividing the 

learning sample into 10 roughly equal parts, each containing a similar distribution of the 

target variable.  CART takes the first nine parts of the data, constructs the largest possible 

tree, and uses the remaining 1/10 of the data to obtain initial estimates of the error rate of 

selected sub-trees.  The same process is repeated on another 9/10 of the data while using 

a different 1/10 part as the test sample.  The process continues until each part of the data 

has been held in reserve one time as a test sample.  The results of the 10 mini-samples are 

combined to form error rates for trees of each possible size (Salford Systems 2001). 

 5.1.4.2 Fraction of cases selected at random for testing.  This option allows 

CART to automatically separate a specified percentage of cases of data for testing 

purposes.  This method is only recommended when there are a minimum of 3,000 

observations available within the data set.  The data selected for testing is random, and 

there is no way to find out which records were used for the learning data set and the test 

data set. 

 5.1.5 Class Assignment.  It is important to understand the methods used in CART 

when assessing the class assignment for each particular node; the percent error 

misclassification stems directly from class assignment.  The probability of a record going 

into the left child node with Class n is computed with Bayes’ Theorem: 

                 ( ) ( ) ( )
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where nx is Class 0,1 or 2.  When using priors equal, the probability of Class n is the 

number of cases in the left node over the total number of cases for that class.  Consider an 



 48

example with two classes calculated with priors equal.  The distribution of each class for 

the root and child nodes is shown as: 

    Root  Left  Right 
  Class 0  10560  6633  3927 
  Class 1  2026  1714  312 
 
Using Bayes’ Theorem, the within node probabilities are calculated as: 

     Left  Right 
   Class 0  0.426  0.707 
   Class 1  0.574  0.293 

where the class assignment for the left node is 1 and 0 for the right node.  All the records 

not of the assigned class contained in the node are misclassified.  The percent error 

misclassification is the sum of the misclassifications per class of each terminal node of 

the entire tree. 

 

5.2 Cart Methodology and Results 

 

 Prior to the construction of the classification trees, the data were properly 

formatted with the fog target variable reclassified from continuous to categorical values 

(for details on formatting, see section 4.1).  Table 8 shows a list of all the variables 

considered for CART testing.  The overall goal when testing the data is to find a decision 

tree which yields 30 percent or less misclassification error rates for the Class 1 fog 

variable. 

 Before running the primary tests on CART, it was determined to use only grid 

point B for producing the forecast decision trees.  Although some correlation was found 

between the target variable and predictor variables for each of the four locations, grid 
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point B maintained some of the strongest correlations for each of the predictor variables.  

It was decided to focus on the data from this particular point for developing forecast 

decision trees. 

 

 5.2.1 Initial Classification Testing.  The initial dataset used for this research was 

for grid point B (see Fig. 13), which contained a total of 12,586 records.  Given this 

amount of data, there were over 100,000 splits possible when running classification trees 

in CART.  The initial Class 1 target variable established for this research included all 

events with visibility less than or equal to 4800 meters and present weather coded as BR 

(fog).  This eliminated those weather events where visibility was reduced due to rain, 

snow, or other weather phenomena.  One significant limitation to this categorization is it 

does not distinguish advection fog events from radiation fog events, which could have a 

severe impact on the final outcome.  

 To begin the testing, the data set was run using the first 13 predictor variables 

from Table 8 against the target variable Fog ≤ 4800.  The number of observations for fog 

events accounts for approximately 16 percent of the data; therefore, priors equal was 

used for all the classification trees so each class would be treated as equally important.  

 Testing was performed twice, once with 10-fold cross-validation and another with 

random sampling (20 percent of the data set aside for testing).  The results from the Gini 

and Twoing methods were compared during the initial test to confirm mathematical 

equivalency.  It is noted in Table 9 that there is not a difference in the relative cost 

(percent error left unexplained by the decision tree) between Gini and Twoing, due to the 

nature of this research as a two class problem.  Therefore, Gini will be the primary 
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method used for the classification trees.  The percent misclassification and percent 

prediction success rates are documented in Tables 10 and 11, with the classification trees 

produced through 10-fold cross-validation and random sampling depicted in Figures 14 

and 15. 

 

Table 8.  List of predictor variables used for CART. 

Predictor Description
Deg C SST Sea surface temperature in degree Celsius
SFCTEMP Surface temperature at grid point
SFCDPD Surface dew point depression at grid point
SFCDIR Surface wind direction at grid point
SFCSPD Surface wind speed at grid point

1000TEMP 1000mb temperature at grid point
1000DPD 1000mb dew point depression at grid point
1000DIR 1000mb wind direction at grid point
1000SPD 1000mb wind speed at grid point
850TEMP 850mb temperature at grid point
850DPD 850mb dew point depression at grid point
850DIR 850mb wind direction at grid point
850SPD 850mb wind speed at grid point
DP-SST Difference between dew point and SST
AT-SST Difference between air temperature at SST

RKJKDIR Wind direction at Kunsan AB
RKJKSPD Wind speed at Kunsan AB

  
Table 9.  Initial relative cost comparison for Grid B data set. 

 Gini Twoing 
Cross Validation 0.690 0.690 
Random Testing 0.712 0.712 
 

Table 10.  10-fold cross-validation misclassification rates for Grid B data set. 

Class Total Cases Learn Data 
Error 

Test Data 
Error 

Learn Data 
Success 

Test Data 
Success 

0 10560 34.53% 34.37% 65.5% 65.6% 
1 2026 31.15% 34.60% 68.9% 65.4% 
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Table 11.  Random sampling misclassification rates for Grid B data set. 

Class Total Cases Learn Data 
Error 

Test Data 
Error 

Learn Data 
Success 

Test Data 
Success 

0 8414 40.56% 41.89% 59.4% 58.1% 
1 1613 25.67% 29.30% 74.3% 70.7% 

 

 The percent error misclassification rate for 10-fold cross-validation of Class 1, the 

fog target variable, is 31.15% and 34.60% for learn and test data respectively.  The 

misclassification rates of Class 1 for random sampling testing were lower at 25.67% and 

29.30%. As indicated from Table 9, the overall relative costs associated with random 

sampling for this data set is higher, indicating a higher error rate covering all the data.  It 

is noted that Class 0 events have better results with 10-fold cross validation and Class 1 

events have better results with random sampling.  With the smaller percentage error rates 

associated with Class 1 individually, it would seem the random sampling is an acceptable 

test to use with this data set since classifying Class 1 events is the primary goal.   

 Figure 14 displays the classification tree produced from 10-fold cross-validation.  

It is important to recognize that four of the root nodes had the same splitting criteria and 

ranked in the same order of importance that was determined from the stepwise regression 

performed on JMP (Table 7):  1000DPD, 1000SPD, Deg C SST and 850DPD.  Similar 

results from two statistical programs give confidence that these particular predictor 

variables are of importance to the forecasting of fog events. 

 Figure 15 is the decision tree for the same data set using the random sampling 

method.  From Table 9, the overall relative cost was higher for this test, but the fog event 

misclassification was lower.  One thing to observe from the decision tree is the similarity 
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in split criteria for nodes 1 through 6 for each of the methods.  The predictor variables are 

the same for those particular nodes, although the specific split criteria (ex. 1000DPD ≤ 

6.250 versus 1000DPD ≤ 5.050) differ somewhat.  In random sampling, a slightly higher 

percentage of Class 1 fog events are split to the right of the tree from node 1 to node 8, 

resulting in further splitting on that side of tree that did not occur with 10-fold cross- 

validation.  This percentage is still fairly minor when compared to the number of events 

on the left side of the decision tree, which is where the primary focus will be. 

 Upon studying the split criteria from the first two trees, a potential problem with 

the arrangement of the wind data was observed for node 5 and terminal nodes 2 and 3.  

The split criterion for these terminal nodes was 850DIR, the 850 mb wind direction.  The 

winds were split at 850DIR ≤ 293.500° and 850DIR ≤ 289.500° for Figure 14 and Figure 

15 consecutively.  The wind direction is arranged around a 360° circle as depicted in 

Figure 16.  As can be seen from the shaded area of the graph, any winds that would be 

less than 293.5° could fall within quadrants I, II, III or part of IV.  Since this covers such 

a large spectrum of values, the splitting of node 5 would only be of minimal use.  The 

method employed to overcome this dilemma was to review the data, and determine if 

there were any sections of wind that could be deleted from the data set. 

 5.2.2 Testing with the removal of 0° through 135° NOGAPS winds.  By reviewing 

the complete data set, it was determined that observations with winds from the northeast 

at grid point B could be deleted from the data set, with the assumption those winds would 

advect sea fog away from the Kunsan operating area.  Observations with SFCDIR, 

1000DIR, and 850DIR NOGAPS values between 0° and 135° accounted for 35 percent 

of 
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DEG_C_SST <= 22.100

Terminal
Node 1

Class = 1
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0 1803 90.3
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0 2794 86.9
1 422 13.1

B1000DPD <=  6.250

Node 2
Class = 1

B1000SPD <= 12.500
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0 6633 79.5
1 1714 20.5
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Terminal
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0 3927 92.6
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Node 1
Class = 0

B1000DPD <=  6.250
Class Cases %

0 10560 83.9
1 2026 16.1

 
Figure 14.  Forecast decision tree using Gini, 10-fold cross-validation.  In node 1, the second line contains the class designation; the third line 
is the conditional statement.  A yes response follows the next level into the left node, while a no response follows down a level to the right 
node. 
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B

C

Node 1
Class = 0
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Class Cases %
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1 1613 16.1

 
Figure 15.  Forecast decision tree using Gini, random sampling.  With random sampling, only 80% of the observations are used to produce the 
decision tree, as compared to 100% of the observations from 10-fold cross-validation. 
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Figure 15. (Continued). 
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the total data set, and 36 percent of all fog events (including radiation fog).  Those 

observations were deleted from the initial data set, renamed as “Test 2”, and another set 

of tests were conducted with 10-fold cross-validation and random sampling, with the 

results displayed in Tables 12 through 14. 
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Figure 16.  Wind circle diagram.  The wind data is given in degrees, with the numerical value 
giving the direction the wind is moving from.  The top of the graph is north, and begins with 0°, 
moving about the circle in a clockwise direction.  Quadrant I is all winds from the northeasterly 
direction, quadrant II southeasterly, quadrant III southwesterly, and quadrant IV northwesterly, 
completing the circle at 360° north.  

 

Table 12.  Relative cost comparison for Test 2 Grid B data set. 

 Gini Twoing 
Cross Validation 0.645 0.645 
Random Testing 0.691 0.691 
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Table 13.  10-fold cross-validation misclassification rates for Test 2 Grid B data set. 

Class Total Cases Learn Data 
Error 

Test Data 
Error 

Learn Data 
Success 

TestData 
Success 

0 6877 35.87% 35.61% 64.1% 64.4% 
1 1300 20.46% 28.85% 79.5% 71.2% 

 
 

Table 14.  Random sampling misclassification rates for Test 2 Grid B data set. 

Class Total Cases Learn Data 
Error 

Test Data 
Error 

Learn Data 
Success 

Test Data 
Success 

0 5465 30.69% 31.94% 69.3% 68.1% 
1 1039 21.37% 37.16% 78.6% 62.8% 

 

 

 As indicated by Table 12, the Gini and Twoing methods once again produced 

identical relative cost comparisons; therefore, the Gini method was used for all further 

testing.  From Table 13, the percent misclassification rate for 10-fold cross-validation of 

Class 1 events is 20.46% for learn data and 28.85% for test data.  This is an improvement 

from the initial forecast decision tree in Table 10 of 34% for learn data and 17% for the 

test data from the initial testing.  From the random sampling testing results shown in 

Table 14, the percent misclassification for learn and test data was 21.37% and 37.16%, 

with an improvement of 16% for the learn data set.  However, there was an 8% increase 

in the number of Class 1 events misclassified when comparing the test data against the 

learn data set when building the tree.  This indicates the removal of the winds increased 

the overall quality of the forecast decision tree, but for this particular data set, 10-fold 

cross-validation provides better results than random sampling.  10-fold cross validation is 

the preferred testing method due to the reduction in Class 1 cases after the removal of 

wind data. 
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 As discussed previously, 10-fold cross-validation is the preferred method when 

there are a limited amount of observations available in the data set.  With the removal of 

35 percent of the total data set, there are now only 1300 Class 1 events (Table 13) to test.  

In random sampling, when 20% of the data set is removed for independent testing, only 

1039 Class 1 cases (Table 14) were available.  Since the misclassification rates continue 

to increase with fewer observations, only 10-fold cross-validation will be used for any 

further forecast decision trees.   
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Figure 17.  Forecast decision tree for Test 2, 10-fold cross-validation.  A summary for each of the 
numbered nodes is provided in Table 9.   

   

While 10-fold cross-validation may have provided improved misclassification 

errors, the forecast decision tree produced for this test was not an ideal decision tool, with 

a total of 26 terminal nodes as compared to 11 from Figure 15.  Figure 17 depicts the 
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forecast decision tree produced from the Test 2 data.  Due to the size of the tree, a 

modified version is shown, with the numerical node information provided in Table 15.  A 

graph depicting the predictor variables used for splitting is shown in Figure 18. 

 

Table 15.  Terminal node details for Test 2 data set. 

Terminal 
Node 

Class 
Assignment 

Node Purity 
Class 0 

Node Purity 
Class 1 

Number of 
Records 
Class 0 

Number of 
Records 
Class 1 

1 1 66.6% 33.4% 1045 523 
2 0 96.9% 3.1% 31 1 
3 0 90.8% 9.2% 337 34 
4 1 65.8% 34.2% 79 41 
5 1 72.1% 27.9% 588 227 
6 1 80.9% 19.1% 178 42 
7 0 100% 0% 19 0 
8 0 90.4% 9.6% 179 19 
9 1 68.7% 31.3% 46 21 
10 0 97.5% 2.5% 236 6 
11 1 76.3% 23.8% 61 19 
12 0 100% 0% 28 0 
13 0 93.4% 6.6% 694 49 
14 1 72.5% 27.5% 87 33 
15 1 33.3% 66.7% 3 6 
16 0 90.5% 9.5% 95 10 
17 1 69.4% 30.6% 59 26 
18 0 93.9% 6.1% 170 11 
19 1 75.9% 24.1% 63 20 
20 0 92.1% 7.9% 58 5 
21 0 97.1% 2.9% 101 3 
22 0 100% 0% 25 0 
23 1 77.2% 22.8% 258 76 
24 0 100% 0% 19 0 
25 0 91.3% 8.7% 230 22 
26 0 95.4% 4.6% 2188 106 

  

 From studying Figure 18, it can be seen that the splitters at the top of the forecast 

decision tree match those evaluated with the initial decision trees:  1000DPD, 1000SPD, 
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and Deg C SST.  This reaffirms the value of those parameters when forecasting fog for 

Kunsan AB.  However, the decision tree is so complex, it would not be logical to use it 

for developing a simple forecast decision tool; therefore, the tree will be pruned upwards 

to determine if a more usable tree can be developed, without sacrificing misclassification 

rates. 
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Figure 18. Predictor variables used for splitting Test 2 data with 10-fold cross-validation.  The 
first three splits on the left side of the tree use the same variables as Figure 14 and 15. 

  

 The pruned forecast decision tree is shown in Figure 19, with the 

misclassification rates listed in Table 16.  There was an increase in the percent of Class 1 

misclassification  
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Figure 19.  Pruned forecast decision tree from Test 2 data using 10-fold cross-validation.  Relative costs increased from 0.645 to 0.663 with an 
increase in learn data set misclassification from 20.46% to 26.92%.   
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rates from 20.46% to 26.92%, which falls within the maximum target error of 30%.  

While this is tolerable, a more accurate decision tree is preferred for operational uses.  

 

Table 16.  Misclassification rates for pruned Test 2 data set, 10-fold cross-validation. 

Class Total Cases Learn Data 
Error 

Test Data 
Error 

Learn Data 
Success 

Test Data 
Success 

0 6877 35.87% 37.21% 64.1% 62.8% 
1 1300 26.92% 29.01% 73.1% 70.9% 

 

 5.2.3 Reclassified Sea Fog Target Variable.  According to 607th Weather 

Squadron (2002), there are some wind directions at Kunsan that are more conducive to 

advective sea fog; it was determined it would be best to focus on those particular winds 

for the next test.  For Kunsan AB, typically winds from the south through northwest 

result in the advection of sea fog into the operating area.  Therefore, it was determined 

that reclassifying the Class 1 fog target variable could possibly lead to more accurate 

results.  Going to the main data sheet, new criteria was established for the Class 1 target 

variable.  In addition to visibility less than or equal to 4800 meters and present weather 

condition coded as BR, the surface winds reported at Kunsan AB must be from 140° to 

340°.  Only when all three of these criteria were met was the event classified as Class 1, 

and the data set relabeled “Test 3” (for all observations) and “Test 4” (removal of 0° 

through 135° upper air NOGAPS winds).  This resulted in a reduction of Class 1 events 

from 2,026 to 876 from the initial data set, and 1,300 to 681 from the Test 2 data set.  

Due to the smaller number of Class 1 events, 10-fold cross-validation is the only method 

used for the following forecast decision trees. 
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 Table 17 shows the results for the Test 3 classification tree, with a 

misclassification rate for learn data of 26.60% and test data of 30.25%, slightly out of the 

target 30% error rate range.  These results are from the classification tree with the lowest 

relative costs.  Further pruning of the tree yielded higher misclassification rates for the 

Class 1 sea fog events; therefore, pruning of this decision tree was not performed.   

 

Table 17.  Misclassification rates for Test 3 data set, 10-fold cross-validation. 

Class Total Cases Learn Data 
Error 

Test Data 
Error 

Learn Data 
Success 

Test Data 
Success 

0 11710 36.06% 37.48% 63.9% 62.5% 
1 876 26.60% 30.25% 73.4% 69.8% 

 

 The most significant feature to note from the forecast decision tree produced from 

the newly categorized target (Fig. 20) is the change in importance for the predictor 

variables.  In the decision trees produced from the initial data set and Test 2 data, the 

primary parameters of interests were 1000DPD, 1000SPD and Deg C SST, regardless of 

the testing method employed.  With the updated target variable, the most significant 

predictor variables are now 850TEMP, SFCDPD, SFCTEMP and 1000SPD.  Using the 

JMP software program to run logistic stepwise regression tests on the new target variable 

yielded similar results.  The top parameter considered by stepwise regression to be of 

importance when building the model is 850TEMP, which does match the results from 

CART.  The other parameters determined by JMP in order of importance were Deg C 

SST, 1000DPD, 1000SPD and SFCTEMP.  The order does differ from the CART output,  
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Figure 20.  Forecast decision tree produced from Test 3 data, 10-fold cross-validation.  This decision tree reclassifies the target, distinguishing 
all fog events from those events which are assumed to be specifically advective sea fog.  Note that unlike prior decision trees, most of the 
Class 1 events now split to the right rather than the left of node 1. 
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Figure 20. (Continued). 
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although SFCTEMP and 1000SPD are considered important predictors at the top of each 

model. 

 One thing to note when studying the number of Class 1 cases contained in the 

nodes is that some of them have a close to even split.  For example, node 7 splits into 

node 8 and node 9 based on 1000SPD criteria.  In this instance, 153 cases go to node 8, 

while 169 cases are split into node 9.  With only a difference of 16 cases, this would 

seem to be relatively weak splitting criteria, with minor value to the research.   

 Another major limitation with this particular forecast decision tree is the wind 

direction splitting criteria.  This particular data set maintained the original observational 

database, including wind directions from the complete 360° wind circle.  This results in 

the same splitting weakness that occurred with the initial data set.  Therefore, further 

testing was completed with the modified NOGAPS wind data. 

 Ten-fold cross-validation was performed on Test 4 data, sea fog events without 

NOGAPS winds from 0° to 135°.  The relative cost for this decision tree was 0.597, the 

lowest of all the trees produced thus far.  The misclassification results are displayed in 

Table 18, with the forecast decision tree in Figure 21, node report in Table 19, and 

splitting parameters in Figure 22. 

 Unlike the forecast decision tree produced from Test 3 data, it is possible to prune 

the Test 4 tree into a more manageable forecast tool, with minimal negative impacts to 

the misclassification rates.  Table 20 shows the misclassification results for the pruned 

tree, with Figure 23 representing the pruned forecast decision tree. 
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Table 18.  Misclassification rates for Test 4 data set, 10-fold cross-validation. 

Class Total Cases Learn Data 
Error 

Test Data 
Error 

Learn Data 
Success 

Test Data 
Success 

0 7496 34.11% 32.52% 65.9% 67.5% 
1 681 17.62% 27.17% 82.4% 72.8% 

 
  

 The learn data set for Test 4 has the lowest misclassification rate seen in the 

research, with 17.62% error.  When running the test data against the forecast decision 

tree produced from the learn data sets, error increases to 27.17%, but still within the 

target of 30% maximum error.  As with the forecast decision tree from Test 2, there are 

18 terminal nodes which provides an unrealistic forecast decision tree for operational use.  

The tree is shown in Figure 21, with a report of the terminal node data given in Table 19. 
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Figure 21. Forecast decision tree from Test 4 data, 10-fold cross-validation.  A summary for each 
of the numbered nodes is provided in Table 13.   
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Table 19.  Terminal node details for Test 4 data set. 

Terminal 
Node 

Class 
Assignment 

Node Purity 
Class 0 

Node Purity 
Class 1 

Number of 
Records 
Class 0 

Number of 
Records 
Class 1 

1 0 97.8% 2.2% 2519 57 
2 1 80.2% 19.8% 1425 352 
3 0 97% 3% 558 17 
4 1 66.7% 33.3% 8 4 
5 1 84.4% 15.6% 76 14 
6 1 88% 12% 309 42 
7 1 88.2% 11.8% 180 24 
8 0 95.3% 4.7% 204 10 
9 0 98.9% 1.1% 90 1 
10 0 100% 0% 53 0 
11 0 98.4% 1.6% 121 2 
12 1 81.9% 18.1% 384 85 
13 0 96% 4% 333 14 
14 0 100% 0% 37 0 
15 1 82.1% 17.9% 165 36 
16 0 97.6% 2.4% 249 6 
17 1 71.4% 28.6% 10 4 
18 0 98.4% 1.6% 775 13 

 
 
  

 The pruned forecast decision tree from Figure 23 reduces the number of nodes 

from the right side of the tree, while increasing the misclassification rate by less than two 

percent.  This ensures the tree is more manageable as a decision tool, without sacrificing 

accuracy.  From studying the tree, it is noted that node 2 contains a total of 624 Class 1 

events, with a split of 387 into node 3 and 237 into node 4.  Although there is a 

difference of 150 cases, the splitting criteria does not discriminate between classes well. 

   From node 3 the splitting criteria is DEG C SST ≤ 23.000, resulting in a Class 1 

terminal node 4.  From the 237 Class 1 events in node 4, the split is 1000SPD to nodes 5 

and 6, with a majority of the Class 1 events split into node 5.  From node 5, the split 
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criteria is DEG C SST ≤ 23.000 (same as node 3), with the majority of Class 1 events 

forming terminal node 4.  Similar terminal node results for DEG C SST from different 

branches of the decision tree allow a workable solution to the previously mentioned node 

2 split. 
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Figure 22.  Predictor variables used for splitting Test 4 data with 10-fold cross-validation.  Note 
that the first two splits of the decision tree use the same predictor variables as the Test 3 decision 
tree in Figure 20. 

 
 

Table 20.  Misclassification rates for pruned Test 4 data set, 10-fold cross-validation. 

Class Total Cases Learn Data 
Error 

Test Data 
Error 

Learn Data 
Success 

Test Data 
Success 

0 7496 35.59% 34.99% 60.4% 65.0% 
1 681 18.94% 28.63% 81.1% 71.4% 
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Figure 23.  Forecast decision tree from pruned Test 4 data, 10-fold cross-validation.  Note that the split from node 2 to nodes 3 and 4 only has 
a difference of 150 cases, resulting in a close split. It would seem that while SFCDPD is a split criterion, it is not a very decisive parameter.
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 5.2.4 Addition of new predictor variables.  One more test was conducted using the 

Test 4 data set, with the addition of two new predictor variables.  According to Cho et al. 

(2000), the difference between air temperature (AT) and SST, as well as the difference 

between dew point (DP) and SST are important factors that affect the occurrence of sea 

fog.  These two parameters were calculated in the datasheet and run through the CART 

program, using Gini and 10-fold cross-validation.  The first forecast decision tree 

produced has a relative cost of 0.604 and a total of 24 terminal nodes.  The 

misclassification rates are shown in Table 21, with the decision tree displayed in Figure 

24, node report in Table 22, and splitter variables in Figure 25. 

 

Table 21.  Misclassification rates with AT-SST and DP-SST predictor variables. 

Class Total Cases Learn Data 
Error 

Test Data 
Error 

Learn Data 
Success 

Test Data 
Success 

0 7496 31.96% 33.50% 68.0% 66.5% 
1 681 17.62% 26.87% 82.4% 73.1% 
 

 Table 21 lists a misclassification rate for Class 1 events as 17.62% for learn data 

and 26.87% for test data, which is similar to the rates calculated for the sea fog Test 4 

data.  Figure 24 shows there are 24 terminal nodes in the optimal tree, which makes this 

an unrealistic tool for use in forecasting sea fog events.  Figure 25 shows the splitting 

variables used for the new decision tree.  Although the misclassification rates are similar 

from this test and the Test 4 data set, there is a significant difference in the splitting 

variables from Figure 25 to those from Figure 22.  The new predictor variable DP-SST 

located in node 1 is now the primary splitter for the data set. 
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Figure 24.  Forecast decision tree with AT-SST and DP-SST predictor variables.  A summary for 
each of the numbered terminal nodes is provided in Table 16. 

 
 
 From reviewing the results from this latest test, the misclassification rates are 

acceptable for developing a forecast tool, but the tree itself has two many terminal nodes 

for adequate operational use.  Therefore, the tree was pruned back to reduce the number 

of nodes, and providing a reasonable forecast decision tree with the new predictor 

variables.  By pruning the tree upwards, the relative cost increased from 0.604 to 0.644, 

but the Class 1 misclassification results did not differ significantly from the optimal tree, 

as shown in Table 23.  

 The Class 1 test data error has an increase of near one percent for the pruned tree.  

By using this particular forecasting decision tree, there is approximately a test data 72% 

prediction success rate for forecasting advective sea fog for Kunsan AB.  The decision 

tree with the new predictor variables is shown in Figure 26. 
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Table 22.  Terminal node details with new AT-SST and DP-SST predictor variable. 

Terminal 
Node 

Class 
Assignment 

Node Purity 
Class 0 

Node Purity 
Class 1 

Number of 
Records 
Class 0 

Number of 
Records 
Class 1 

1 0 96.5% 3.5% 495 18 
2 1 78.6% 21.4% 33 9 
3 1 79.5% 20.5% 31 8 
4 0 97.7% 2.3% 129 3 
5 1 88% 12% 73 10 
6 0 100% 0% 73 0 
7 1 78.2% 21.8% 154 43 
8 0 99.1% 4.7% 204 10 
9 0 98.5% 1.5% 2605 41 
10 1 83.8% 16.2% 109 21 
11 1 81.8% 18.2% 45 10 
12 0 94.9% 5.1% 409 22 
13 1 70.6% 29.4% 12 5 
14 0 100% 0% 75 0 
15 1 81.1% 18.9% 163 38 
16 0 97.4% 2.6% 227 6 
17 1 81.3% 18.7% 1686 388 
18 0 98.2% 1.8% 430 8 
19 0 99.1% 0.9% 106 1 
20 0 93.7% 6.3% 149 10 
21 1 76.8% 23.2% 63 19 
22 0 95.8% 4.2% 227 10 
23 1 73% 27% 27 10 
24 0 100% 0% 66 0 

 

 Studying the pruned decision tree from Figure 26 shows that the predictor 

variable DP-SST is now the lead splitting criterion, as compared to 850TMP from Figure 

23.  The second split of importance for Class 1 events was Deg C SST, which already 

proved to be a significant variable as shown in previous decision trees.   

 Reviewing all the tests and forecast decision trees produced for this research 

problem, it is determined that the two most significant for the forecasting of sea fog are 

the trees from Figure 23 and Figure 26.  These two decision trees come from a data set 
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that had been filtered to remove winds that did little to contribute to the development of 

sea fog.  In addition, the target variable was formatted from the Kunsan AB surface 

observations in a way such that the reduced visibility events that were not the direct 

result 
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Figure 25. Forecast decision tree splitters with new predictor variables.  Note that the primary 
split is based on the new variable DP-SST, while AT-SST is further down the right side of the 
tree. 

 

Table 23.  Misclassification rates for pruned tree with AT-SST and DP-SST variables. 

Class Total Cases Learn Data 
Error 

Test Data 
Error 

Learn Data 
Success 

Test Data 
Success 

0 7496 39.91% 36.21% 60.1% 63.8% 
1 681 18.21% 28.19% 81.8% 71.9% 
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B850TEMP <= -0.410

Terminal
Node 1

Class = 0
Class Cases %

0 495 96.5
1 18 3.5

SFCTEMP <= 15.590

Terminal
Node 2

Class = 1
Class Cases %

0 493 87.1
1 73 12.9

SFCTEMP >  15.590

Terminal
Node 3

Class = 0
Class Cases %

0 109 99.1
1 1 0.9

B850TEMP >  -0.410

Node 4
Class = 1

SFCTEMP <= 15.590
Class Cases %

0 602 89.1
1 74 10.9

B850DIR <= 295.500

Node 3
Class = 0

B850TEMP <= -0.410
Class Cases %

0 1097 92.3
1 92 7.7

B850DIR >  295.500

Terminal
Node 4

Class = 0
Class Cases %

0 2605 98.5
1 41 1.5

DP_SST <= -9.360

Node 2
Class = 0

B850DIR <= 295.500
Class Cases %

0 3702 96.5
1 133 3.5

B1000TEMP <= 14.390

Terminal
Node 5

Class = 1
Class Cases %

0 813 89.4
1 96 10.6

B1000TEMP >  14.390

Terminal
Node 6

Class = 0
Class Cases %

0 227 97.4
1 6 2.6

B850TEMP <=  8.390

Node 7
Class = 1

B1000TEMP <= 14.390
Class Cases %

0 1040 91.1
1 102 8.9

B850TEMP >   8.390

Terminal
Node 7

Class = 1
Class Cases %

0 1686 81.3
1 388 18.7

DEG_C_SST <= 23.000

Node 6
Class = 1

B850TEMP <=  8.390
Class Cases %

0 2726 84.8
1 490 15.2

DEG_C_SST >  23.000

Terminal
Node 8

Class = 0
Class Cases %

0 1068 94.8
1 58 5.2

DP_SST >  -9.360

Node 5
Class = 1

DEG_C_SST <= 23.000
Class Cases %

0 3794 87.4
1 548 12.6

Node 1
Class = 0

DP_SST <= -9.360
Class Cases %

0 7496 91.7
1 681 8.3

 

Figure 26.  Forecast decision tree with AT-SST and DP-SST predictor variables.  Note that the new variable DP-SST is the splitting criterion 
for node 1, with a majority of Class 1 events moving into the right side of the decision tree.
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of sea fog were not classified as Class 1 events.  Finally, these two particular trees had 

the lowest misclassification results for Class 1 events when compared to all the tests 

conducted. 

 The splitting rules established for the produced trees are to be verified with 24-

hour lead-time of the occurrence of sea fog at Kunsan AB.  These rules have been 

established through the CART program with 10 years of climatological analysis data.  

The predictors yield a 72% accuracy rating, and should be used as a guide for a more 

sound forecast decision of sea fog 24 hours in advance.   
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VI. Conclusions and Recommendations 

6.1 Conclusions 

 The overall goal of this research was to determine a method for forecasting sea 

fog events at Kunsan AB, with a 24-hour lead-time.  The primary method used to satisfy 

this objective was data mining with classification and regression tree analyses.  This 

research used observational data from Kunsan AB and analysis data from the NOGAPS 

and SFCTMP models covering the Yellow Sea region. 

 The first objective was to perform a geographical and climatological overview of 

the Kunsan AB region.  Kunsan is a port city located in southwest Korea, bordered on the 

west and south by the Yellow Sea.  The close proximity to the water and seasonal 

fluctuations of the Yellow Sea Current result in numerous advective sea fog events in the 

area, particularly in the spring and summer months when cold water upwelling is 

prevalent.  

 The second objective defined fog types and formation processes, and how they 

relate to this region.  The formation of sea fog is dependent on hydrological factors such 

as sea current and sea surface temperature, as well as air temperature, humidity, and 

wind. Advective sea fog is formed when warmer air moves over a cooler water surface, 

such as when warmer air moves over the cold water upwelling off the coasts of southwest 

Korea.    

 Third, the collection of sea surface temperature data, upper air data, and surface 

observational data for Kunsan AB, as well as upstream locations (both over land and the 

Yellow Sea), was necessary to continue the study.  The three sets of data included  

surface weather observations for Kunsan AB, sea surface temperature data for the Yellow 
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Sea (both obtained from AFCCC databases), and upper air grid data for the Yellow Sea 

region covering four grid points (from the NOGAPS model). 

 For the fourth objective, formatting all the data was necessary in order to perform 

statistical examinations.  Since the target variable was defined categorically, logistic 

regression (which works with a binary outcome variable) was the statistical method of 

choice.  These tests compared the correlation between the target variable (sea fog) and 

the various predictor variables.  Stepwise logistic regression was performed on JMP to 

determine the importance of various predictor variables.  The study was narrowed down 

to one grid point of interest, which from initial testing had the most significant effect on 

advective sea fog impacting Kunsan AB.  The predictors were listed in order of 

importance to the formation of fog, but more detailed information was needed to provide 

a forecast decision tool to the 8th OSS/OSW at Kunsan AB.    

 To develop a forecast decision tool, the fifth objective was to use data mining 

CART analysis on the data sets.  Data mining was used to determine if there were 

relationships between the target variable and predictor variables that was not evident 

through standard statistical regression.  Multiple tests were run, modifying the data sets 

in an effort to produce the most effective forecast tool.  The predictor variables used for 

splitting in the initial forecast decision trees were similar to those variables determined 

by JMP to be of most importance:  1000DPD, 1000SPD, DEG C SST, and 850DPD.  

Upon changing the rules for categorizing the target variable, the key parameter of 

importance as determined by JMP was 850TMP, which was the same result as the 

decision tree produced by CART.  A final test was performed by adding two new 

predictor variables, which once again changed the splitting criteria.  One of the new 
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variables, DP-SST was listed as the most significant in JMP, as well as the top splitting 

criterion in CART. 

 The final objective was to develop forecast decision trees to assist in choosing the 

best predictors for forecasting advective sea fog, and providing that product to the 8th 

OSS/OSW at Kunsan AB.  Beginning with the initial data set and eventually modifying 

the target variable and adding two new predictors, a total of nine forecast decision trees 

were produced.   

 The first decision tree produced a test data accuracy rating of 65.4%, well below 

the standards set for this research.  Upon modifying the wind data, the accuracy rating for 

test data increased to 71.2%.  The next decision tree of importance contained the 

reclassified target variable, and produced an accuracy rating of 72.8%, but this tree was 

too large to use operationally without producing a computerized forecast model.  Upon 

pruning the tree (Figure 23), the accuracy rating decreased to 71.4%, but still within 

reasonable limits.  A final tree was developed by adding two predictor variables and 

pruning upwards (Figure 26), yielding an accuracy rating of 71.9%.  It was determined 

that the decision trees from Figure 23 and Figure 26 produced the best results, with an 

almost equal prediction success of approximately 72%.   

 The forecast decision trees from Figures 23 and 26 contained the data set that 

removed observations with SFCDIR, 1000DIR, and 850DIR NOGAPS values between 

0° and 135°, which accounted for 35 percent of the total data set, and 36 percent of all 

fog events (including radiation fog events).  In addition, the target variable was 

reclassified from the original “Fog ≤ 4800” to “Sea Fog”, which had the following 

conditions:  visibility less than or equal to 4800 meters, present weather condition coded 
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as BR, and the surface winds reported at Kunsan AB from 140° to 340°.  This was done 

in an effort to filter radiation fog events rather than advection sea fog occurrences.  

 It was determined to make two sea fog decision tree tools; one based off of each 

of the selected CART forecast decision trees.  Since each of the selected decision trees 

produced an accuracy rating of approximately 72%, both should be tested for application 

in real-time weather forecasting.  The final Sea Fog Forecast Decision Trees are seen in 

Appendices A and B.  These rules are experimental and formulated as suggestive criteria 

for developing more accurate sea fog forecasts.  However, they are provided and 

recommended for immediate operational use as they are developed from actual 

observational data. 

6.2 Recommendations 

 CART analyses used in this research provided insightful information into the 

feasibility of providing forecasts by means of forecast decision trees.  Given large 

databases and a variety of predictors, accuracy ratings can be calculated for new methods 

in forecasting which may not have been considered previously.  However, given the 

nature of data mining and as seen from the products produced in this research, CART 

does not always yield one unambiguous method which can be used in forecast decisions.   

 Further research on this particular topic is desired in an effort to improve 

accuracy ratings of the forecast decision trees.  An extended POR will yield a greater 

database for CART to work with, allowing a wider range of tests to be conducted within 

the program, rather than just 10-fold cross-validation.  In addition, the NOGAPS data 

used for this research was on a 2.5 x 2.5 degree grid, whereas NOGAPS is now available 

on a 1 x 1 degree grid.  A wider range of data points in the region to the west of Kunsan 
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AB may provide a more accurate location from which to forecast the formation of 

advective sea fog events. 

 Another recommendation for future research is to develop the forecasting 

decision tree to include low level stratus conditions in addition to sea fog advecting into 

the Kunsan operating area.  On many occasions low stratus accompanies sea fog events, 

with both having negative impacts to military air operations, and should be considered in 

future forecast decision trees. 

 Throughout this project, accuracy ratings were sacrificed in order to produce 

forecast decision trees that are easy for a forecaster to follow.  In the future, the potential 

to automate the process into a computer program will allow the use of the complete 

decision trees without pruning.  This would produce higher accuracy ratings for sea fog 

forecasting, as well as provide a means for an easily generated model output statistic. 

 It is recommended that further weather research can be conducted in CART, 

provided sufficient data and an ample POR is available for any potential study.  There are 

numerous ways to approach data analyses with this program, with a goal of maintaining a 

low misclassification rate.  Overall, CART provided useful information as to which 

predictors can be used to forecast the arrival of advective sea fog into the Kunsan AB 

area with 24-hour notification.  Further evaluation and refining of the decision trees 

provided should be conducted, so this method can be included into the important forecast 

process. 
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Appendix A: Decision Tree #1 for Forecasting Sea Fog at Kunsan AB 
 

 
 This is a forecast decision tree based off the CART tree produced in Figure 23.   
This graph is provided as a supplemental tool for forecasting the formation of sea fog, 
and was designed to be applied for the location at 125E 35N.  The lead time for this tree 
is 24 hours; therefore, these are the conditions that should exist at that NOGAPS model 
grid point 24 hours prior to the formation of sea fog.  If the parameters indicate “Forecast 
Sea Fog”, use the Land/Sea Breeze Front Checklist (Appendix C) developed by the 607th 
Weather Squadron (2002) to determine if there will be a sea breeze.  If yes, it is likely 
there is a high probability sea fog will advect into the Kunsan AB area. 

 
 

START

850mb Temp  ≤ - 0.2°C

NO

YES

Sfc DPD  ≤ 3.5°C NO

YES

SST  ≤ 23°C NO

YES

Forecast Sea Fog

Low probability of sea fog

1000mb Wind Spd ≤ 12.5 kts
NO

YES

NOYES SST  ≤ 23°C

START

850mb Temp  ≤ - 0.2°C

NO

YES

Sfc DPD  ≤ 3.5°C NO

YES

SST  ≤ 23°C NO

YES

Forecast Sea Fog

Low probability of sea fog

1000mb Wind Spd ≤ 12.5 kts
NO

YES

NOYES SST  ≤ 23°C
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Appendix B: Decision Tree #2 for Forecasting Sea Fog at Kunsan AB 
 
 

 This is a forecast decision tree based off the CART tree produced in Figure 26.  
This graph is provided as a supplemental tool for forecasting the formation of sea fog, 
and was designed to be applied for the location at 125E 35N.  The lead time for this tree 
is 24 hours; therefore, these are the conditions that should exist at that NOGAPS model 
grid point 24 hours prior to the formation of sea fog.  If the parameters indicate to 
“Forecast Sea Fog”, use the Land/Sea Breeze Front Checklist (Appendix C) developed 
by the 607th Weather Squadron (2002) to determine if there will be a sea breeze.  If yes, it 
is likely there is a high probability sea fog will advect into the Kunsan AB area. 
 

 

START

DP - SST  ≤ - 9°C

NO

YES

SST  ≤ 23°C NO

YES

850mb Temp  ≤ 8°C

NO

YES

Forecast Sea Fog

Low probability of sea fog

START

DP - SST  ≤ - 9°C

NO

YES

SST  ≤ 23°C NO

YES

850mb Temp  ≤ 8°C

NO

YES

Forecast Sea Fog

Low probability of sea fog
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Appendix C: Land/Sea Breeze Front Checklist  
 
 

This land/sea breeze checklist was obtained from the 607th Weather Squadron (2002).  It 
is recommended for use when forecasting the advection of sea fog into Kunsan AB. 
 
1.  Sea surface temperature (SST) near area of interest.                                                                       (°C) 
 
2.  Land temperature (LT) required today (SST + 3.5°C) (see below).                                                   (°C) 
 
3.  Maximum temperature expected today.                                                                                       (°C) 
 
4.  Is temperature favorable?  If the value in step 2 is less than in step 1, enter NO.   
If it is the same or more, enter YES.                                                                     _YES/NO_ 
 
5.  Wind direction at 0900L today.                                                                                                       (deg) 
 
6.  Is direction favorable?  If it is from sea to land, enter NO.   
If it is from land to sea or is calm, enter YES.                                                                    _YES/NO_ 
  
7.  Wind speed at 0900L today.                                                                      (knots) 
 
8.  Is speed favorable?  If it is more than 9 knots, enter NO.  If it is 9 knots or less, enter YES.  
                                                          _YES/NO_ 
 
9.  Will a sea breeze pass the station today?  If NO has been answered for any step above, enter NO. 
If YES has been answered for steps 3, 5, and 7, enter YES.                                             _YES/NO_ 
 
This table was developed using a monthly mean sea surface temperature plus 3.5 Celsius degrees.  The 
table does not take into account the daily variations in SST each month.  Temperatures are in degrees 
Celsius. 

 
Month Land temp required for sea breeze (deg C) 
January 10 
February 8 
March 10 
April 13 
May 16 
June 20 
July 24 

August 28 
September 25 

October 21 
November 16 
December 12 
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ACRONYMS 

 
 
AFCCC Air Force Combat Climatology Center 

AFGWC Air Force Global Weather Central 

AFWA  Air Force Weather Agency 

AT  Air Temperature 

BR  Mist 

C  Celsius 

CART  Classification and Regression Tree 

DP  Dew Point  

DPD    Dew Point Depression 

FAA  Federal Aviation Administration 

FG  Fog 

FNMOC Fleet Numerical Meteorology and Oceanography Center 

K  Kelvin 

LST  Local Standard Time 

METAR Aviation Routine Weather Reports 

NOGAPS Navy Operational Global Atmospheric Prediction System 

OCDS  Operational Climatic Data Summary 

OI  Optimum Interpolation 

OSS/OSW Operational Support Squadron Weather Flight 

POR  Period of Record 

QC  Quality Control 
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RAOB  Rawinsonde Observation 

ROK  Republic of Korea 

RTNEPH Real-Time Nephanalysis Model 

SFCTMP Surface Temperature Model 

SST  Sea Surface Temperature 

TEMP  Temperature 

WS  Weather Squadron 

WW  Weather Wing 
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variable and upstream upper air predictors, as well as, upstream model analyses over the Yellow Sea.  The results of the regression and CART data mining analyses 
are summarized as forecasting guidelines to aid forecasters in predicting the evolution of sea fog events and advection over the area. 
15. SUBJECT TERMS 
Sea fog, Classification and Regression Tree, CART, Advection fog, Advective sea fog 

16. SECURITY CLASSIFICATION OF: 19a.  NAME OF RESPONSIBLE PERSON 
Ronald P. Lowther, Lt Col, USAF 

a. REPORT 
 

U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U 

17. LIMITATION OF  
     ABSTRACT 
 
 

UU 

18. NUMBER  
      OF 
      PAGES 
 

103 

19b.  TELEPHONE NUMBER (Include area code) 
(937) 255-3636, ext 4645 

   Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39-18 

 


